

Date Planned ://	Daily Tutorial Sheet-2	Expected Duration : 90 Min
Actual Date of Attempt : / /	JEE Advanced (Archive)	Exact Duration :

16. For a gaseous reaction 2B \longrightarrow A, the equilibrium constant K_P is than K_C .

(1997)

- 17. The degree of dissociation is 0.4 at 400K and 1.0 atm for the gaseous reaction $PCl_5 \rightleftharpoons PCl_3 + Cl_2$. Assuming ideal behaviour of all the gases, calculate the density of equilibrium mixture at 400 K and 1.0 atm (relative atomic mass of P = 31.0 and Cl = 35.5). (1998)
- **18.** For the reversible reaction, $N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$

(2000)

At 500°C, the value of K_p is 1.44×10^{-5} when partial pressure is measured in atmosphere. The corresponding value of K_c with concentration in mol/L is:

(A) $\frac{1.44 \times 10^{-5}}{(0.082 \times 500)^{-2}}$

(B) $\frac{1.44 \times 10^{-5}}{(8.314 \times 773)^{-2}}$

(c) $\frac{1.44 \times 10^{-5}}{(0.082 \times 773)^2}$

- (D) $\frac{1.44 \times 10^{-5}}{(0.082 \times 773)^{-2}}$
- 19. At constant temperature, the equilibrium constant (K_p) for the decomposition reaction, $N_2O_4 \Longrightarrow 2NO_2$, is expressed by $K_p = \frac{4x^2p}{(1-x)^2}$, where p = pressure, x = extent of decomposition. Which one of the following

statement is true?

(2001)

- (A) K_p increases with increases of p
- **(B)** K_n increases with increases of x
- (C) K_p increases with decreases of x
- (D) K_p remains constant with change in p and x
- **20.** Consider the following equilibrium in a closed container $N_2O_4(g) \rightleftharpoons 2NO_2(g)$

At a fixed temperature, the volume of the reaction container is halved. For this change, which of the following statements hold true regarding the equilibrium constant (K_p) and degree of dissociation (α) ?

- (A) Neither K_p nor α changes
- **B)** Both K_p and α changes
- (2002)

- (C) K_p changes but α does not change
- (D) K_p does not change but α changes
- 21. In the following equilibrium $N_2O_4(g) \Longrightarrow 2NO_2(g)$ when 5 moles of each are taken, the temperature is kept at 298 K the total pressure was found to be 20 bar. Given that (2004)

$$\Delta G_f^{\circ}(N_2O_4) = 100 \text{kJ}, \ \Delta G_f^{\circ}(NO_2) = 50 \text{ kJ}$$

 \odot

- (i) Find ΔG° of the reaction.
- (ii) The direction of the reaction in which the equilibrium shifts.
- **22.** $Ag^+ + NH_3 \rightleftharpoons [Ag(NH_3)]^+; K_1 = 3.5 \times 10^{-3}$

(2006)

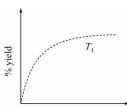
 $[Ag(NH_3)]^+ + NH_3 \Longrightarrow [Ag(NH_3)_2]^+; K_2 = 1.7 \times 10^{-3}$

Then the formation constant of $[Ag(NH_3)_2]^+$ is:

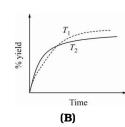
- (A) 5.95×10^{-6}
- **(B)** 5.95×10^6
- (C) 5.95×10^{-9}
- **(D)** None of these

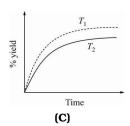
*23. The thermal dissociation of equilibrium of CaCO₃(s) is studied under different conditions. (2013)

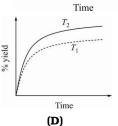
$$CaCO_3(s) \Longrightarrow CaO(s) + CO_2(g)$$


For this equilibrium, the correct statement(s) is:

- (A) ΔH is dependent on T
- **(B)** K is independent of the initial amount of CaCO3
- (C) K is dependent on the pressure of CO₂ at a given T
- **(D)** ΔH is independent of the catalyst, if any
- 24. The %yield of ammonia as a function of time in the reaction


 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g), \Delta H < 0 \text{ at } (P, T_1) \text{ is given below :}$


If this reaction is conducted at (P, T_2) , with $T_2 > T_1$, the %yield of (2015)


ammonia as a function of time represented by:

- *25. The gas phase reaction $2NO_2(g) \longrightarrow N_2O_4(g)$ is an exothermic reaction. The decomposition of N_2O_4 , in equilibrium mixture of $NO_2(g)$ and $N_2O_4(g)$, can be increased by : (2016)
 - (A) lowering the temperature
 - (B) increasing the pressure
 - (C) addition of an inert gas at constant volume
 - **(D)** addition of an inert gas at constant pressure
- $\Delta_f G^{\circ}$ at 500 K for substance 'S' in liquid state and gaseous state are +100.7 kcal mol⁻¹ and 26. +103 kcal mol⁻¹, respectively. Vapour pressure of liquid 'S' at 500 K is approximately equal to:
 - (A) 0.1 atm
- (B) 1 atm
- (C) 10 atm
- (D) 100 atm
- 27. At a certain temperature in a 5 L vessel, 2 moles of carbon monoxide and 3 moles of chlorine were allowed to reach equilibrium according to the reaction, $CO + Cl_2 \Longrightarrow COCl_2$ (2018)

At equilibrium, if one mole of CO is present then equilibrium constant (K_o) for the reaction is:

 (\blacktriangleright)

- (A)
- (B) 2.5
- (C)
- For the following reaction, the equilibrium constant K_c at 298 K is 1.6×10^{17} 28.
- (2019)

$$Fe^{2+}(aq) + S^{2-}(aq) \Longrightarrow FeS(s)$$

When equal volumes of 0.06 M Fe^{2+} (aq) and 0.2 M S^{2-} (aq) solutions are mixed, the equilibrium concentration of Fe^{2+} (aq) is found to be $Y \times 10^{-17} \text{M}$. The value of Y is______